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a b s t r a c t

Two fundamental aspects of invasion dynamics are population growth and population spread. These
quantities have been subject of study in biological invasions and can be used to study management
and control of organisms. In this paper we derive formulae to calculate wave speed and rates of spread
for coupled map lattices. Coupled map lattice models are dynamical models where space and time are
discrete. We also show how wave speed and rate of spread can be calculated for structured population
coupled map lattices in deterministic, stochastic environments and heterogeneous landscapes. Coupled
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map lattices are simple mathematical models that can be easily linked to landscape data to study invading
organisms control strategies.
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. Introduction

Two fundamental aspects of invasion dynamics are population
rowth and population spread. The two related quantities (intrin-
ic growth rate and rate of spread) are essential to invasion theory.
hey have been the subject of study in mathematical models for
nvasions (Hastings et al., 2005), and the quantities are key con-
rol parameters in conservation management and biological control
Fagan et al., 2002; Shea, 2004; Neubert and Parker, 2004; Allen
t al., 1996). Because of the long time and broad spatial scales at
hich invasions occur, the use of models is essential to understand

he dynamics of invasions and design possible management and
onservation strategies.

There are several modelling strategies for population growth
nd spatial spread: partial differential equations, integro-difference
quations, coupled map lattices, and cellular automata. Partial
ifferential equations incorporate continuous space and time,

ntegro-difference equations, discrete time and continuous space,
nd coupled map lattice, discrete time and space. For cellu-

ar automata, in addition to time and space being discrete, the
tate space is also discrete. Which modelling strategy is the
est depends upon the dynamical characteristics of the sys-
em under analysis, and upon spatio-temporal scales. In the last
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two decades there has been an increase in the use of discrete
models due to their ability to incorporate stochastic compo-
nents and local inhomogeneities (Durrett and Levin, 1994), and
because personal computers now allow for fast numerical com-
putations.

Integro-difference equation (IDE) models are discrete-time and
continuous-space models, that incorporate dispersal data directly
using a kernel function (Kot et al., 1996). This dispersal kernel
allows for the redistribution of individuals in continuous space.
These models have been widely used to study spatial dynamics
and control of invasive species (e.g. Allen et al., 1996; Buckley et al.,
2005; Kot et al., 1996). Mathematically an IDE is defined as

nt+1(x) =
∞∫

−∞

k(x, y)︸ ︷︷ ︸
dispersal from y to x

f [nt(y)]︸ ︷︷ ︸
growth at y

dy. (1)

Here nt(x) is population density at time t location x and f [nt(y)]
describes population growth. The dispersal kernel k(x, y) is a proba-
bility density function describing the likelihood of dispersal to point
x.

Coupled map lattices (CMLs) are models where space and time
are discrete, and whose structure is similar to IDEs. Some CMLs
have been used to study host–parasitoid interactions (Hassell

et al., 1991; Kean and Barlow, 2001; Bjornstad and Bascompte,
2001; Bonsall and Hassell, 2000), metapopulation level applications
(Janosi and Scheuring, 1997), applied biological control (Rees and
Paynter, 1997; Rees and Hill, 2001), and tree dispersal (Jiang and
Zhang, 2008). A coupled map lattice is a dynamical system where
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ime and space are discrete, and the state variable is continuous
White and White, 2005; Kaneko, 1992).

As with integro-difference equations, a CML describes the
rowth and dispersal of the population, but now on a discrete
attice. Strictly, a CML only involves local interactions, meaning
ispersal occurs in a local neighbourhood ˝. However, there is
o restriction on how large ˝ is. Consider the continuous spa-
ial domain X̄ . A one-dimensional discrete regular lattice over X̄
s defined as X = {x−∞, . . . , x0, . . . , x−∞}, with xi = ih, where h is
he cell size (scale) of the lattice and i is an integer. Mathematically
CML can be defined,

t+1(xi) =
∑
xj ∈ ˝

k(xi, xj)︸ ︷︷ ︸
dispersal from xj to xi

f [nt(xj)]︸ ︷︷ ︸
growth at xj

, (2)

here xi, xj are points in a one-dimensional lattice, nt(xi) is popu-
ation at time t location xi, f [nt(xi)] is a map that models population
rowth and k(xi, xj) is a discrete probability mass function for dis-
ersal. In a spatially homogeneous environment, dispersal kernels
hat only depend on signed distance xd = xi − xj are called differ-
nce kernels. As an example of a difference kernel k(xd), xd = xi − xj ,
onsider,

(xd) =
{

(1 − u) if xd = 0
u

|˝| − 1
, otherwise (3)

here |˝| is the number of cells in the neighbourhood ˝. Note
hat u ∈ [0, 1] and

∑
˝k(xd) = 1. When |˝| = 3, this example is

onsidered a classic CML model with nearest neighbour interac-
ion. CMLs can be extended to a two-dimensional spatial lattice.
ere the nearest neighbour interactions, in a Moore neighbour-
ood, involve the central lattice point and eight neighbours so that

˝| = 9.
Some comparative studies show how results can be obtained

sing CMLs are similar to those found with other modelling
tructures like IDEs and individual-based models (White and

hite, 2005; Brannstrom and Sumpter, 2005). As we will show
ere, analytical tools developed for IDEs can be used directly
o study spread in discrete space for structured population

odels.
In this paper we apply tools developed for calculation of wave

peed and spread rate in integro-difference equations to coupled
ap lattices. To our knowledge, the application of these to CMLs is

ew. We use CMLs to study the population dynamics and spread
f structured populations with applications to a particular invader,
centless chamomile (Matricaria perforata), an introduced annual,
iennial or short-lived perennial plant that has become a widely
istributed weed in cultivated areas in North America (Hinz, 1996;
inz and McClay, 2000). We further analyze possible control strate-
ies, and explore CMLs in heterogeneous landscapes and stochastic
nvironments.

. Discrete structured spatial models

.1. Matrix coupled map lattice equations

Matrix population models have been shown to be an effective
ool to study population growth and control (Shea and Kelly, 1998;
an den Driessche and Watmough, 2002; Parker, 2000; McLeod and
aunders, 2001). Space can be incorporated in the matrix model

ormulation by extending a structured population across space, and
onsidering dispersal between these locations in a continuous or
iscrete domain. Here we consider stage-structured models with
iscrete space which we will call Matrix CML. For continuous space
tage-structured models see Neubert and Caswell (2000). A matrix
Fig. 1. Life cycle graph of scentless chamomile. Node 1: seed bank, node 2: rosettes,
and node 3: flowering plants.

CML equation with stage structure is described by

nt+1(xi) =
∑
xj ∈ ˝

[K̃(xi, xj) ◦ A]nt(xj). (4)

Here A is the projection matrix, nt(xi) is a vector of stages at time
t location xi and K̃ is a matrix of discrete kernels whose elements
k̃lm(x, y) are kernels that describe dispersal as the individual moves
from location y to x from stage m to stage l. Each entry of K̃(xi, xj) =
[k̃lm(xi, xj)] must satisfy:

∞∑
i=−∞

k̃lm(xi, xj) = 1, (5)

If difference kernels are assumed then K̃(xi − xj). The symbol “◦”
denotes Hadamard product which is element-wise multiplication.
It is assumed that the m × m matrix A is non-negative and primi-
tive; hence there is a real and positive dominant eigenvalue � that
corresponds to the population growth rate. For detailed definition
and examples of matrix models (see Caswell, 2001).

As an example, consider the matrix model for scentless
chamomile (SC) from de Camino-Beck and Lewis (2007). Fig. 1
describes the scentless chamomile life cycle graph. The pro-
jection interval for this model is 1 year. Nodes 1, 2 and 3
correspond to seeds, rosettes and flowering plant stages. In the
life cycle, seeds can germinate and produce either rosettes (stage
without flowers) or flowering plants, or stay in the seed bank.
Rosettes can survive over winter producing a flowering plant
next year. The projection matrix of scentless chamomile is given
by

A =
[

a11 0 a13
a21 0 a23
a31 a32 a33

]
. (6)

Since only seeds disperse (the third column of the matrix), the
dispersal matrix is given by difference kernels

K̃(xi, xj) = K̃(xi − xj) =

⎡
⎣�(xi − xj) �(xi − xj) k̃(xi − xj)

�(xi − xj) �(xi − xj) k̃(xi − xj)
�(xi − xj) �(xi − xj) k̃(xi − xj)

⎤
⎦ , (7)

Here k̃(z), z = x − y is the dispersal kernel describing the dispersal
of seeds and the discrete delta function �(xi − xj), defined as

�(xi − xj) = ıij =
{

1, if i = j
0, otherwise

, (8)

is used for transitions where no dispersal occurs. As can be seen
from the third column of matrix K̃(z), seeds, produced by flowering
plants, disperse and can remain as seeds, germinate to rosettes, or

germinate to flowers in a single year.

A dispersal kernel can be defined using mechanistic principles,
or can be obtained directly from data without assuming any partic-
ular shape (Lewis et al., 2005). Consider the example when relative
frequencies of disperser fj , are collected in two directions and at
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Substitution into (4) yields a formula that relates the speed of the
wave c to the steepness of the wave s (as shown in Appendix A.2),

c(s) = 1
s

ln(�1(s)). (14)
ig. 2. Linear interpolation of the scentless chamomile data obtained as described
n Appendix A.1. The data is obtained from the sum in all four cardinal directions,
rom seed traps collected in Vegreville, Alberta.

egular distances from a point source. With data points

{(y−m, f−m), . . . , (y−2, f−2), (y−1, f−1), (y1, f1), (y2, f2), . . . ,

(ym, fm)}, (9)

here yj is the location of the sample and fj is the correspond-
ng frequency, using a linear interpolation function, a continuous
ifference kernel suitable for an integro-difference model can be
efined in terms of z = x − y,

(x, y) = k(z) = fi + (fi − fi−1)
z − yi

yi − yi−1
with yi−1 < z < yi. (10)

s an example see Fig. 2, where the kernel shows absolute number
f seeds.

A discrete kernel k̃(x, y) can come from discretizing a continuous
ernel k(x, y) at any scale for use in terms of xd = xi − xj ,

˜(xd) =
∫ xd+(h/2)

xd−(h/2)

k(z)dz, −∞ < xd < ∞. (11)

In two dimensions, a radially symmetric matrix of ker-
els K(x, y) = K(r), r =

√
z2

1 + z2
2, z1 = x1 − y1, z2 = x2 − y2 is dis-

retized for use in a CML. With dispersal from (xj1 , xj2 ) to (xi1 , xi2 )
q. (11) can be written in terms of xd1

= xi1 − xj1 and xd2
= xi2 − xj2

s

˜ (xd) =
∫ xd1

+(h/2)

xd1
−(h/2)

∫ xd2
+(h/2)

xd2
−(h/2)

K

(√
z2

1 + z2
2

)
dz1 dz2. (12)

. Population spread rates

The way invasive species move across space, and how fast this
ccurs, is essential in the understanding invasion processes and
ow they can be controlled. With matrix IDEs, it is possible to cal-
ulate the rate of spread of a local population. As described below,
he rate of spread, denoted c∗, is calculated as the minimum pos-
ible wave speed c of a moving wave front. In this section, we first
escribe how these two quantities can be calculated for matrix IDEs,
nd then show how these calculations hold for matrix CMLs.

.1. Calculating rate of spread in a matrix CML

A quantity that can be computed when space is included is the

ate of spatial spread of a population that has been introduced
ocally. The spread rate c∗ is defined for a locally introduced pop-
lation as follows. An observer moving along a ray oriented away
rom the local introduction will asymptotically observe a popula-
ion density of zero if the movement speed is faster than c∗ and
l Modelling 220 (2009) 3394–3403

will asymptotically observe a positive population density if the
speed is slower than c∗. A rigorous discussion and analysis of spread
rates for structured population models can be found in Lui (1989).
Neubert and Caswell (2000) showed for matrix integro-difference
equations (matrix IDE), that the spread rate c∗ can be related to the
wave speed c(s) for an exponentially declining population density
nt = we−s(x−ct).

CMLs can be considered a special case of matrix IDE, where space
is discrete, therefore the dispersal kernel takes the shape of a func-
tion on a discrete lattice. To define wave speed, first we define the
wave front and relate the discrete space CML with an associated
exponential profile in a continuous space system (Fig. 3). We then
show the derivation of the wave speed formula for discrete systems.

Similar to a matrix IDE, a wave speed formula can be derived for
structured CML models. The derivation follows that of Neubert and
Caswell (2000), but in this case we are dealing with discrete points
on a lattice. Here, when deriving the wave speed, we are looking
at a linear transition matrix in Eq. (4). In linear matrix CMLs the
spread rate c∗ of a locally introduced population can be calculated
using the approach of Neubert and Caswell (2000) by evaluating
the minimum possible wave speed c for an exponentially declining
population density,

nt(xi) = we−s(xi−ct). (13)
Fig. 3. (a) Associated exponential profile that moves a distance c ≈ 0.9 in one time
step. n0 is the detection threshold. (b) The detection threshold n0 in the exponential
profile is located between points xj(t) and xj(t)+1.
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Because of this large difference between years, rate of spread will
be calculated for both.

Fig. 5. This figure shows why the marginal distribution of the kernel is taken when
analyzing spread in one dimension. Suppose position xi is being updated, then
propagules will arrive to location xi in a two-dimensional system from all directions,
T. de-Camino-Beck, M.A. Lewis / Eco

he spread rate for the locally introduced population is given as:

∗ = min
s>0

c(s), (15)

here �1(s) is the largest eigenvalue of H̃(s) = A ◦ M̃(s) and M̃(s) is
he matrix of generating functions:

˜ (s) =
∞∑

−∞
K̃(xj)e

sxj . (16)

he formula for the spread rate Eq. (15) is proved rigorously in Lui
1989) in a general measure-theoretic context that includes both
he discrete space setting (as given here) and the continuous space
etting (as given in Neubert and Caswell, 2000). Fig. 3a shows the
xponential profile and wave speed.

The spread on the lattice Ct , as calculated by the average rate
f spatial extent of the spread over time, that is, Ct = xj(t)/t, where
j(t), called spatial extent of spread, is the furthest point in the lattice
here n(xj(t)) ≥ n0, n(xj(t)+1) < n0 and n0 is the critical level where
site is considered not empty (Fig. 3b). Appendix A.2 shows that
hen the initial profile of the wave is exponentially decreasing with

teepness s, it is possible to show that Ct → c(s) as t → ∞, where
(s) is the velocity of spread given in (14).

In summary, calculation of spread rate initially requires the
ransition matrix A and kernel matrix K̃. The kernel matrix is trans-
ormed to give a matrix of moment generating functions M̃(s) by
. This yields H̃(s) = A ◦ M̃(s), whose dominant eigenvalue �1(s), is
sed in Eqs. (14) and (15) to calculate the spread rate c∗. Neubert
nd Caswell (2000) give a detailed derivation linking c∗ to the min-
mum of c(s).

For density-dependent projection matrices, the so-called linear
onjecture states that the rate of spread of the matrix IDE model
ith density-dependent projection matrix An, is governed by its

inearization around n = 0 (Neubert and Caswell, 2000). In other
ords, even if there are nonlinear interactions in the population,

he rate of spread is given by the growth and dispersal behaviour of
he leading edge of the invasion, where n is close to zero. Generally,
his conjecture requires that there are no Allee effects at low pop-
lation density. Some mathematical conditions under which the

inear conjecture is known to hold are given in Lui (1989).

.2. Calculating two-dimensional spread

A two-dimensional CML is defined as follows:

t+1(xi) =
∑
xj ∈ ˝

[K̃(xi − xj) ◦ A]nt(xj), (17)

here nt+1(xi) now describes population density nt+1 in location
j = [xj yj]

T in two dimensions, and K̃(xi − xj), as described earlier,
s a matrix of kernels. Spread in two dimensions is calculated by
onsidering only one direction, perpendicular to the wave front
see Lewis et al., 2005).

It turns out that it is the marginal distribution of this two dimen-
ional kernel that is needed for calculating population spread (see
lso Lewis et al., 2005). In this case the marginal distribution can
e calculated by summing over one direction to give

˜ (xd1
) =

∞∑
xd2

=−∞
K̃(xd), (18)

ith xd = [xd1
xd2

]T (Fig. 4). The illustration in Fig. 5 shows the rea-

on why probabilities are summed in one direction when the kernel
s used in one dimension to describe two-dimensional spread. Fig. 4
hows the marginal distribution of a two-dimensional kernel.

Here we consider the case where spread is equal in all directions.
ence, Eq. (12) and Fig. 4 pertain.
Fig. 4. Marginalized kernel for scentless chamomile data. The marginal distribution
is taken on a two-dimensional kernel.

In summary, the marginal distribution of the kernel (Eq. (18)
and Fig. 4) is used in calculating the matrix of generating functions
(18). From this the spread rate c∗ is calculated from (14) and (15).

3.3. Scentless chamomile rate of spread

Using the projection matrix in Eq. (6), and the kernel as defined
in Eq. (10), it is possible to calculate the rate of spread for scent-
less chamomile. From field data collected in Vegreville, Canada in
2003–2005 (see Appendix A.1), the estimated projection matrix for
scentless chamomile is given by:

A1 =
[

0.08 0 36376.45
0.27 0 517
0.04 0.45 297.85

]
,

A2 =
[

0.08 0 1775.22
0.27 0 25.24

]
. (19)
with probability indicated by the concentric circles (the circles represent a kernel
describing probabilities associated with points of origin xj for a seed dispersing to
xi , k(xj, xi)). If spread is taken only in the direction of the dashed line, contributions
from locations below and above have to be considered. Hence, when the system is
analyzed in one direction u, the contributions in direction v, have to be summed. A
precise mathematical derivation is given in Lewis et al. (2005).
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Table 1
Estimated rate of speed for scentless chamomile. The calculations were done with
data described in Appendix A.1.

Method c year 1 c year 2

Eq. (15) c∗ = 16.55 m/year c∗ = 11.32 m/year
Simulation in 1D c∗ ≈ 16.55 m/year c∗ ≈ 11.32 m/year
Bootstrap 90% CI {16.43, 16.67 } {10.33, 12.10 }
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defined earlier, H̃ (s) = M̃ (s) ◦ Ã for t = 1, 2, . . ., where H̃ (s) is
ig. 6. Numerical simulation showing the front wave moving over time, in a one-
imensional simulation of the spread of scentless chamomile.

Using Eq. (15) we calculated the rate of spread for scent-
ess chamomile to be c∗ = 16.55 m/year for year 1 and c∗ =
1.32 m/year for year 2. The numerical simulations of the spread
ate and the 90% confidence intervals are shown in Table 1. The
onfidence intervals were obtained from bootstrapping the disper-
al with a sample of 86 seeds. Fig. 6 shows the moving front in the
ne dimension numerical simulation.

. Incorporating heterogeneous landscape

Coupled map lattice models provide a convenient and direct way
f linking real landscape information with the population model.
he basic equation for growth and spread (Eq. (4)) with a difference
ernel can be written in two spatial dimensions and modified to
nclude growth or establishment constraints

t+1(xi) = P(xi) ◦
∑
xj ∈ ˝

[K(xj − xi) ◦ A]nt(xj). (20)

ere P(xi) is a vector whose entries contain the probability of
stablishment of propagules in each stage in location xi = [xi yi]

T .
landscape P can be defined directly from a raster layer in a GIS

ystem, as we will show later with an example.
It is expected that any spatial constraints will change the wave

peed depending on the ability of the dispersers to travel long or
hort distances, and thus disperse in a fragmented landscape (With,
004). Consider, for example, an invading organism that spreads
uickly, diluting local populations. It may reduce global popula-
ions in a landscape where patches are too small, failing to establish
table populations in local patches. Hence, spatial inhomogeneities
ould be of consequence when designing control strategies.

To investigate spread of scentless chamomile (SC) through the
andscape, we ran simulations of scentless chamomile on a real
andscape. To run simulations on a landscape, we simplified the

centless chamomile system to an unstructured population model
f the form:

t+1(xi) = P(xi)
∑

˝

k(xi − xj)�1nt(xj), (21)
l Modelling 220 (2009) 3394–3403

where �1 is the SC population growth rate for year 1, and P(xi) is
the growth constraint in location xi. We use an unstructured model
to simplify calculations and discussions, however, if detailed infor-
mation exists on the effect of landscape on life stages, Eq. (20) can
be used directly.

On the real landscape the discrete dispersal kernel was scaled
using coarser 25 m bin sizes in Eq. (11) (3 × 3 cells in the land-
scape). The distances in the lattice are calculated from the center
of the lattice point to the center of the adjacent lattice point. To
illustrate the applicability of a CML model at a landscape level, we
simulated spread using the estimated kernel over a 25 m resolution
classified satellite image of the Vegreville-Edmonton region (Fig. 7),
involving the area were the parameter estimates of the matrix
mode were obtained, and dispersal data was collected. The clas-
sified image (Fig. 8a), shows pasture, cropland, forest, water bodies
and infrastructure on a 25 m pixel resolution. Chamomile can grow
in croplands, pastures, and infrastructure (road edges) (Bowes et al.,
1994). The probability of establishment p were obtained from habi-
tat occupancy reported for scentless chamomile in Saskatchewan
((Bowes et al., 1994), Table 2, samples from Balgonie, 1985). Based
on occupancy probability, p for pastures was set to 0.6, cropland
0.024 and infrastructure 0.3. Results of the simulation are shown
in Fig. 8. The simulations show the spread after 50, 150 and 300
iterations starting with an initial density of 1000 on a 25 m2 area.
Assuming spread equal in all directions, the velocity of spread was
calculated using (1/t)(

√
area/�). The rate of spread for the het-

erogeneous landscape is 15.25 m/year compared to 22.25 m/year
in the numerical simulation without constraints. The difference
between the calculated c∗ = 16.55 m/year, and the numerical simu-
lation without constraints, 22.25 m/year, is due to the scale at which
the kernel was discretized. Coarser scales (larger h) result in fatter
kernels and therefore higher c∗.

5. Environmental stochasticity

The matrix IDE and matrix CML model described assume tempo-
ral invariance in population growth and spread. However, in many
cases this assumption is unrealistic (Neubert and Parker, 2004).
Strong resource dependencies change local population dynamics
and as a consequence, the ability of organisms to spread (Dwyer
and Morris, 2006; Fagan et al., 2005). Chamomile results show how
growth rate differs substantially from one year to the next one, and
this difference also influences the rate of spread (Table 1).

The effect of these fluctuating environments can be incorpo-
rated by making population growth rate and the dispersal kernel a
function of time (Neubert et al., 2000). For a CML,

Nt+1(xi) =
∞∑

j=−∞
[K̃t(xi − xj) ◦ At]Nt(xj). (22)

Here K̃t(xd), xd = xi − xj is a matrix whose elements are indepen-
dent, and identically distributed (i.i.d.) discrete dispersal kernels,
At are i.i.d. projection matrices, independent of the dispersal ker-
nels for t = 0, 1, 2, . . ., and Nt(xi) is a stochastic process describing
the density of individuals at grid point xi and time t. In other words,
for a given time t and lattice point xi, Nt+1(xi) is a vector of random
variables describing the density of individuals from each stage.

Neubert et al. (2000) derived a formula to calculate the expected
rate of spread and its variance for a stochastic scalar IDE. Here we
derive formulae that can be used for stochastic matrix CMLs. As
t t t t

the matrix of generating functions for K̃t (see Eq. (16)). As in the
earlier section H̃t(s) is a time-dependent non-negative and prim-
itive matrix, with dominant eigenvalue �1t(s) and corresponding
eigenvector w1t(s). Appendix A.3 shows that the random variable
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escribing the spread rate Ct is given by Ct = xj(t)
t . As t → ∞,

t = xj(t)

t
→ 1

s

(
1
t

t−1∑
�=0

ln(�1�(s))

)
, (23)

t(s), the mean of (40) up to time t, is evaluated using the domi-
ant eigenvalue �1� of the time-dependent matrix H̃t(s). Because
ach eigenvalue is an i.i.d. random variable, and (23) calculates the
ean of these from time � = 0 to � = t − 1, the central limit theo-

em applies as t → ∞. By the central limit theorem, Ct is normally
istributed with mean

(s) = E[ln(�10)s−1], (24)

nd variance

2(s, t) = 1
t

Var[ln(�10)s−1], (25)

or large time t.
As shown in Neubert et al. (2000) for scalar integro-difference

quations, the expected spread rate for stochastic matrix CMLs is
alculated as,

¯∗ = min �(s) = �(s∗). (26)

s>0

Consider the scentless chamomile example. Fecundities were
ubstantially different between year 1 and year 2, therefore there
s one projection matrix for each year, A1 and A2 (19). As these

ere observed after two years we assume in the absence of any
tion shown in Fig. 8. Map taken from Young et al. (2006) and edited with authors

other information that they are equally likely to occur. The kernels
are kept constant. For large times t the average speed and variance
are given by �(s∗) and �2(s∗, t) where the mean is

�(s) = 1
2s

[ln(�1(H̃1(s))) + ln(�1(H̃2(s)))], (27)

and the variance is,

�2(s, t) = 1
t

[
1

2s2
ln2(�1(H̃1(s))) + ln2(�1(H̃2(s)))

]
− �2(s), (28)

and s∗ is the wave steepness that minimizes (27) (see Eq. (26)). With

H̃1 = A1 ◦
[

1 1 M̃(s∗)
1 1 M̃(s∗)
1 1 M̃(s∗)

]
, H̃2 = A2 ◦

[
1 1 M̃(s∗)
1 1 M̃(s∗)
1 1 M̃(s∗)

]
, (29)

the expected spread rate calculated using Eq. (26), is c̄∗ = 14.29 and
its variance �2(s∗, t) = 196.9/t. Fig. 9 shows the calculated wave
speed Ct and wave speed variance �2(t), for 20 realizations of the
numerical simulations. As seen in the figure, Ct converges to the
calculated c̄∗ and the variance decreases according to (28) as time
increases.

6. Discussion
We showed that the wave speed and rate of spread can be cal-
culated for matrix CMLs in constant and stochastic environments
in one and two dimensions. We also showed how heterogeneous
landscape information can be incorporated to the CML model. Using



3400 T. de-Camino-Beck, M.A. Lewis / Ecological Modelling 220 (2009) 3394–3403

Fig. 8. Numerical simulations of Eq. (20) on a real landscape, the land uses classes correspond to, blue: water, dark green: forest, light green: pastures, yellow: cropland,
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ight blue: infrastructure. (a) Landscape corresponds to a subsection of Fig. 7, (b) sim
fter 150 iterations, and (d) 300 iterations. Shades of grey show scentless chamomi
s referred to the web version of the article.)

centless chamomile as an example, we showed how these meth-
ds can be applied.

.1. Matrix coupled map lattices

Coupled map lattices are a convenient way of modelling spatial
ynamics of invasive species. In these models population struc-
ure, age or stage structured, and spatial dynamics, using discrete
ernels; can be incorporated to calculate vital quantities in biolog-
cal invasion. The main result of this paper is a CML framework for
alculating rates of spread in constant, heterogeneous and stochas-
ic environments. The methods shown here, calculation of rate of
pread in stochastic and constant environments, are tools already
eveloped for scalar and matrix IDEs (Kot et al., 1996; Neubert et
l., 2000; Neubert and Caswell, 2000).
There are few examples of CMLs being used for biological
nvasions. In most cases, the CML have been used informally to
ncorporate heterogeneous landscape information and study dis-
ribution patterns, and not to calculate spread. Bjornstad and
ascompte (2001), for example, build a CML to understand how
on after 50 years, (c) simulation of Eq. (20) parameterized for scentless chamomile
sity. (For interpretation of the references to colour in this figure legend, the reader

the self-organizing spatial patterns emerge; and Rees and Paynter
(1997), build a spatially explicit structured models that studies the
ground covered by scotch broom. These models do not formulate
the calculation of rate of spread, nor do they allow for analytical
work due to their complexity. Individual-based models have been
a choice for modelling spread in heterogeneous environment, but
their results are not amenable to general analysis, like formal differ-
ential equations or integro-difference equation models (Hastings et
al., 2005).

The formulae derived here are summarized in Table 2. The quan-
tity c∗ is the biologically relevant statistic. If an individual viewing
the invasion moves faster than c∗, it will outrun the invasion. On
the other hand if it moves slower than c∗ then it will fall behind.
The calculation of c∗ is done using the related wave speed quan-
tity c(s). This quantity describes the speed of a declining profile

nt(x) ∝ exp(−s(x − ct)), where the speed is a function of the steep-
ness of the wave s. The relation between c∗ and c(s) was initially
investigated by Aronson and Weinberger (1978) for Fisher’s equa-
tion. They showed that the rate of spread is obtained by minimizing
c(s) over all possible values of steepness s. The same holds for both
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Table 2
Rate of spread formulae.

Symbol Description Formula Source

c(s) Wave speed for matrix IDEs, and matrix CMLs (14) Neubert and Caswell (2000) (IDE) and this paper (CML)
∗

x CML

m
L

u
r
a

6

g

(
(

(

(

F
m
u

c Spread rate for matrix IDEs and matrix CMLs
Ct Average rate of spatial extent of spread fro matrix IDEs and matri
Ct Average rate of spatial extent of spread stochastic matrix CMLs
c̄∗ Expected spread rate for stochastic matrix CMLs

atrix IDEs (Neubert and Caswell, 2000), and for matrix CMLs (see
ui, 1989, for the general proof).

The assumption that environments are constant over time is
nrealistic. For that, Ct , a random variable describing the average
ate of spatial extent can be used. It is possible to calculate the mean
nd variance for Ct , for large time.

.2. Lessons for the design of control strategies

Matrix CMLs can be a useful tool for the design of control strate-
ies, because they allow one to:

1) Calculate demographic parameters, �, R0, and rate of spread c∗.
2) Determine how fast a pest is spreading and what aspects of the
life history of the invader should be target of control.
3) Establish how landscape heterogeneity, using real landscape

information from GIS, affects the rate of spread of the invader.
4) Incorporate environmental stochasticity and study the effect of

control strategies reducing spread.

ig. 9. Estimated velocity of spread and variance for 20 realization of the stochastic
odel. The simulations were run 20 iterations. The dashed line indicates c̄ obtained

sing Eq. (26).
(15) Neubert and Caswell (2000) (IDE) and this paper (CML)
s (40) Neubert and Caswell (2000) (IDE) and this paper (CML)

(23) This paper
(26) This paper

(5) Focus on measurable local dispersal data, rather than long-
distance human-mediated dispersal.

(6) Potentially use the CML model to optimize strategies in space
and time to minimize c∗ and � with minimum effort.

Although matrix CMLs and other models of spatial dynamics,
are a simplified representation of the invasion process, assuming
the basic dynamic is well defined in these models, they can serve
as useful tools to focus control of invasive species research.
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Appendix A.

A.1. Scentless chamomile field data

Parameter estimates of the transition matrix entries aij were
obtained from field work and the literature estimates as follows.
In the 32 plots established, a cohort in an inner 1 m × 1 m plot
was followed for 3 years. The first year (2003), all emerging scent-
less chamomile plants were counted, these plants were assumed
to have germinated from the seed bank and not from additional
sources (dispersal). At the end of the year all rosettes and flowering
plants were counted and all flowering plants were clipped, transi-
tion a31 was calculated from the number of flowering plants that
year, and a21 from all scentless chamomile plants that had no flow-
ers. The second year (2004), only surviving over-wintering rosettes
remained. There were no new emerging plants. Transition a32 was
estimated from the number of rosettes that produced flowers at
the end of the year. The number of flowering heads were counted in
the clipped treatments. The third year (2005) included rosettes and

flowering plants, all flowering heads were removed and counted in
September 2005. The total fecundity (a13 + a23 + a33) was obtained
from the flower counts and image data for 2004 and from flower
counts on 2005 (see Table 3). To differentiate between transitions
a13, a23, a33 the number of seeds for each transition was estimated

Table 3
Transition matrix parameter estimation. S: seed bank, R: rosettes, and F: flowering
plants.

Transition Description Source

a11 SB survival Hinz (1999)
a21 SB to R Emerging R year 1
a31 SB to F Emerging F year 1
a32 R to F Surviving R to F year 2
a13, a23, a33 F to SB,R, F Field data. Proportional to Hinz (1999)
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sing the same transition probabilities of seeds going to the seed
ank, rosettes or flowering plants, found by Hinz (1999).

To estimate the dispersal ability of scentless chamomile, two
ealthy plants were transplanted from the Alberta Research Council
ARC) green house in Vegreville, to a hay field in July 2004. Each
lant had 222 and 232 flowering heads with an average of 330
eeds/head. For each plant, 10 cm diameter, 10 cm deep, seed traps
ere placed in the North, East, South, West directions at distances

f 0.5, 5, 10, 15 and 20 m from the source plant. Seeds were collected
he following year in late spring and manually counted.

.2. CML wave speed

When the initial profile of the wave is exponentially decreasing
ith steepness s, it is possible to show that Ct → c(s) as t → ∞,
here c(s) is the velocity of spread given in (14). For an initial

ondition of the form:

0(xi) = n0e−sxi , (30)

ny solution to (4) can be written in term of eigenvalues �i(s) and
igenvectors wi(s) of H(s) as

t(xi) = [ˇ1�1(s)tw1(s) + ˇ2�2(s)tw2(s) + · · · + ˇn�n(s)twn(s)]e−sxi .

(31)

ividing by �1(s)t we get,

nt(xi)

�1(s)t
=
[

ˇ1w1(s) + ˇ2

(
�2(s)
�1(s)

)t

w2(s) + · · ·

+ ˇn

(
�n(s)
�1(s)

)t

wn(s)

]
e−sxi . (32)

ecause �1 is the largest eigenvalue, as t → ∞,

nt(xi)

�1(s)t
= ˇ1w1(s)e−sxi , (33)

here w1(s) is the left eigenvector of H(s) and gives the stable stage
istribution in the spreading population and s is the steepness of
he advancing edge of the wave. Rearranging Eq. (33),

t(xi) = ˇ1w1(s)e−sxi �1(s)t . (34)

ithout loss of generality, we consider any component nt of nt

ith corresponding eigenvector component w1. Since we are deal-
ng with a discrete lattice rather than the real line, at time t, n0 lies
omewhere between discrete points xj(t) and xj(t)+1 (Fig. 3b). Hence,

nt(xj(t)) ≤ n0 ≤ nt(xj(t)+1)
ˇ1w1(s)e−sxj(t) �1(s)t ≤ n0 ≤ ˇ1w1(s)e−s(xj(t)+1)�1(s)t ,

(35)

hich can be rewritten,

−sxj(t) ≤ n0

ˇ1w1(s)
�1(s)−t ≤ e−sxj(t) e−sh. (36)

aking natural logarithms and dividing by s gives

xj(t) ≤ 1
s

ln

(
n0

ˇ1w1(s)

)
− t

s
ln(�1(s)) ≤ −xj(t) − h, (37)

nd dividing by −t yields

xj(t)

t
≥ 1

st
ln

(
n0

ˇ1w1(s)

)
+ ln(�1(s))

s
≥ xj(t)

t
− h

t
, (38)

hich can be rewritten,
1
st

ln

(
n0

ˇ1w1(s)

)
+ ln(�1(s))

s
≤ xj(t)

t
≤ 1

st
ln

(
n0

ˇ1w1(s)

)

+ ln(�1(s))
s

+ h

t
. (39)
l Modelling 220 (2009) 3394–3403

As t → ∞ the left and right quantities in the above equation
approach 1

s ln(�1(s)), the spread rate Ct is defined as,

Ct = xj(t)

t
→ 1

s
ln(�1(s)) = c(s), (40)

as in Eq. (14).

A.3. Wave speed for stochastic environment matrix CMLs

In this Appendix we show that with an initial condition of the
form n0 = n0e−sx, solutions to (22) can be written as a linear com-
bination,

N1(xi) = [ˇ10�10(s)w10(s) + ˇ20�20(s)w20(s) + · · · ]e−sxi (41)

N2(xi) = [ˇ11�10(s)�11(s)w11(s) + ˇ20�20(s)�21(s)w21(s) + · · · ]e−sxi

...

Nt(xi) =
[

ˇ1t−1

(
t−1∏
�=0

�1�(s)

)
w1t−1(s) + · · ·

]
e−sxi . (43)

Dividing by
∏t−1

�=0�1�(s), and since �1�(s) are the largest eigenval-
ues, as t → ∞,

Nt(xi) → ˇ1t−1w1t−1(s)e−sxi

(
t−1∏
�=0

�1�(s)

)
. (44)

Without loss of generality, consider any component Nt of Nt with
corresponding eigenvector component w1t−1(s). In the lattice at
time t, n0 lies somewhere between discrete points xj(t) and xj(t)+1
(Fig. 3). Hence,

Nt(xj(t)) ≤ n0 ≤ Nt(xj(t)+1), (45)

which can be written,

e−sxj(t) ≤ n0

ˇ1t−1w1t−1(s)

(
t−1∏
�=0

�1�(s)

)−1

≤ e−sxj(t) e−sh. (46)

Taking the natural logarithms and dividing by −st yields,

1
st

ln

(
n0

ˇ1t−1w1t−1(s)

)
+ 1

s

(
1
t

t−1∑
�=0

ln(�1�(s))

)
≤ xj(t)

t
(47)

≤ 1
st

ln

(
n0

ˇ1t−1w1t−1(s)

)
+ 1

s

(
1
t

t−1∑
�=0

ln(�1�(s))

)
+ h

t
. (48)

The spread rate Ct = xj(t)/t is now a random variable. As t → ∞,

Ct = xj(t)

t
→ 1

s

(
1
t

t−1∑
�=0

ln(�1�(s))

)
, (49)

Ct(s), the mean of (40) up to time t, evaluated using the dominant
eigenvalue �1� of the time-dependent matrix H̃t(s).
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